

LESSON PLAN-2026 SUMMER

Discipline: MECHANICAL ENGG	Semester: 4th	Name of the Teaching Faculty: BHABANI SANKAR SAHOO
Subject: THERMAL ENGINEERING-II [MEPC-204 Th:2]	No. of days/per week Class allotted:03	Semester From date:22.12.2025 To Date :18.04.2026 No. of Weeks:15
Week	Class Day	Theory Topics
1 ST	1 ST	I. Gas Turbines: Air-standard Brayton cycle; Description with P-V and T-S diagrams.
	2 ND	Gas turbines Classification: open cycle gas turbines and closed cycle gas turbines.
	3 RD	Comparison of gas turbine with reciprocating I.C. engines and steam turbines. Applications and limitations of gas turbines.
2 ND	1 ST	General lay-out of Open cycle constant pressure gas turbine P-V and T-S diagrams and working
	2 ND	General lay-out of Closed cycle gas turbine; P-V and T-S diagrams and working.
	3 RD	Jet Propulsion: Principle of jet propulsion; Fuels used for jet propulsion; Applications of jet propulsion
3 RD	1 ST	Working of a turbojet engine.
	2 ND	Principle of Ram effect; Working of a Ram jet engine.
	3 RD	Principle of Rocket propulsion; Working principle of a rocket engine.
4 TH	1 ST	Applications of rocket propulsion; Comparison of jet and rocket propulsions.
	2 ND	II. Properties of Steam: Formation of steam under constant pressure. Industrial uses of steam
	3 RD	Basic definitions: saturated liquid line, saturated vapor line, liquid region, vapor region, wet region, superheat region, critical point, saturated liquid, saturated vapor, saturation temperature
5 TH	1 ST	Sensible heat, latent heat, wet steam, dryness fraction, wetness fraction, saturated steam, superheated steam, degree of superheater.
	2 ND	Determination of enthalpy, internal energy, internal latent heat, entropy of wet, dry and superheated steam at a given pressure using steam tables
	3 RD	Determination of enthalpy, internal energy, internal latent heat, entropy of wet, dry and superheated steam at a given pressure using Mollier chart
6 TH	1 ST	Isochoric process, Isobaric process
	2 ND	Hyperbolic process, Isothermal process,
	3 RD	ISENTROPIC process, Throttling process, Polytropic process
7 TH	1 ST	Simple direct problems on the above using tables and charts; .
	2 ND	Steam calorimeters: Separating, throttling, Combined Separating and throttling calorimeters – problems
	3 RD	CLASS TEST
	1 ST	III. Steam Generators: Function and use of steam boilers; Classification of steam

23-12-25

23/12/25

Head of the Deptt
Mechanical Engg. Deptt
GIET (Polytechnic) Jagatpur, Cuttack

Principal

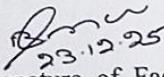
GIET (Polytechnic)
Jagatpur, Cuttack

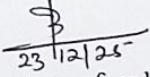
8 TH	boilers with examples
	2 ND Brief explanation with line sketch of Cochran. Brief explanation with line sketch of Babcock and Wilcox Boilers;
	3 RD Boiler mountings: Pressure gauge, water level indicator, fusible plug, blow down cock, stop valve, safety valve, (dead weight type, spring loaded type, high pressure and low water safety alarm)
9 TH	1 ST Boiler accessories: feed pump, economizer, super heater and air preheater
	2 ND Study of steam traps & separators; Explanation of the terms: Actual evaporation, equivalent evaporation, factor of evaporation, boiler horse power and boiler efficiency
	3 RD Formula for the above terms without proof; Simple direct problems on the above
10 TH	1 ST Draught systems (Natural, forced & induced).
	2 ND IV. Steam Nozzles: Flow of steam through nozzle.
	3 RD Velocity of steam at the exit of nozzle in terms of heat drop using analytical method
11 TH	1 ST Velocity of steam at the exit of nozzle in terms of heat drop using Mollier chart
	2 ND Simple numerical problems
	3 RD Discharge of steam through nozzles
12 TH	1 ST Critical pressure ratio
	2 ND Methods of calculation of cross- sectional areas at throat and exit for maximum discharge
	3 RD Effect of friction in nozzles and Super saturated flow in nozzles. Working steam jet injector. Simple numerical problems
13 TH	1 ST Simple numerical problems.
	2 ND CLASS TEST
	3 RD V. Steam Turbines: Classification of steam turbines with examples; Difference between impulse & reaction turbines
14 TH	1 ST Principle of working of a simple De-lavel turbine with line diagrams- Velocity diagrams
	2 ND Expression for work done, axial thrust, tangential thrust, blade and diagram efficiency, stage efficiency, nozzle efficiency
	3 RD Methods of reducing rotor speed; compounding for velocity, for pressure or both pressure and velocity
15 TH	1 ST Working principle with line diagram of a Parson's Reaction turbine-velocity diagrams; Simple problems on single stage impulse turbines (without blade friction)
	2 ND Reaction turbine including data on blade height. Bleeding, re-heating and re-heating factors(Problems omitted)
	3 RD Governing of steam turbines: Throttle, By-pass & Nozzle control governing.

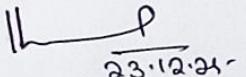
23.12.25

23.12.25
Date
Mechanical Engg. Deptt.
GIET (Polytechnic) Jagatpur, Cuttack

23.12.25


Principal
GIET (Polytechnic)
Jagatpur, Cuttack


Learning Resources:


SL.NO.	Name of the Book	Author Name	Publisher
01.	A Course in Thermal Engineering	S. Domkundwar & C. P. Kothandaraman	Dhanpat Rai & Publication, New Delhi
02.	Thermal Engineering	P. L. Ballaney	Khanna Publishers, 2002
03.	Treatise on Heat Engineering in MKS and SI Units	V. P. Vasandani & D.S. Kumar	Metropolitan Book Co. Pvt. Ltd, New Delhi.
04.	Thermal Engineering	R. K. Rajput	Laxmi publications Pvt Ltd, New Delhi.

Prepared By

BHABANI SANKAR SAHOO
 Lecturer, Mechanical Engg. Deptt.
 G.I.E.T (Polytechnic), Jagatpur, Cuttack

 23.12.25
 Signature of Faculty.
 GIET(polytechnic)
 Jagatpur, cuttack

 23/12/25
 Signature of sr.lect.
 GIET(polytechnic)
 Jagatpur, cuttack
 , eau . 1. Dept.
 Mechanical Engg. Dept.
 GIET (Polytechnic) Jagatpur

 23.12.25
 Signature of Principal.
 GIET(polytechnic)
 Jagatpur, cuttack
Principal
GIET (Polytechnic)
Jagatpur, Cuttack

